Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.875
Filtrar
1.
Commun Biol ; 7(1): 448, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605243

RESUMEN

Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble ß-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds ß-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, ß-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while ß-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.


Asunto(s)
Saltamontes , beta Caroteno , Animales , Saltamontes/metabolismo , Carotenoides/metabolismo , Xantófilas , Quitina
2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612516

RESUMEN

The purpose of this study was to compare the retention rate of Adeno-associated viral vector (AAV) gene therapy agents within different subretinal injection systems. The retention of AAV serotype 2-based voretigene neparvovec (VN) and a clinical-grade AAV serotype 8 vector within four different subretinal cannulas from two different manufacturers was quantified. A standardized qPCR using the universal inverted terminal repeats as a target sequence was developed. The instruments compared were the PolyTip® cannula 25 g/38 g by MedOne Surgical, Inc., Sarasota, FL, USA, and three different subretinal injection needles by DORC, Zuidland, The Netherlands (1270.EXT Extendible 41G subretinal injection needle (23G), DORC 1270.06 23G Dual bore injection cannula, DORC 27G Subretinal injection cannula). The retention rate of VN and within the DORC products (10-28%) was comparable to the retention rate (32%) found for the PolyTip® cannula that is mentioned in the FDA-approved prescribing information for VN. For the AAV8 vector, the PolyTip® cannula showed a retention rate of 14%, and a similar retention rate of 3-16% was found for the DORC products (test-retest variability: mean 4.5%, range 2.5-20.2%). As all the instruments tested showed comparable retention rates, they seem to be equally compatible with AAV2- and AAV8-based gene therapy agents.


Asunto(s)
Saltamontes , Parvovirinae , Animales , Serogrupo , Sistemas de Liberación de Medicamentos , Terapia Genética , Dependovirus/genética
3.
Proc Natl Acad Sci U S A ; 121(14): e2313305121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527195

RESUMEN

Aquatic locomotion is challenging for land-dwelling creatures because of the high degree of fluidity with which the water yields to loads. We surprisingly found that the Chinese rice grasshopper Oxya chinensis, known for its terrestrial acrobatics, could swiftly launch itself off the water's surface in around 25 ms and seamlessly transition into flight. Biological observations showed that jumping grasshoppers use their front and middle legs to tilt up bodies first and then lift off by propelling the water toward the lower back with hind legs at angular speeds of up to 18°/ms, whereas the swimming grasshoppers swing their front and middle legs in nearly horizontal planes and move hind legs less violently (~8°/ms). Force measurement and model analysis indicated that the weight support could be achieved by hydrostatics which are proportionate to the mass of the grasshoppers, while the propulsions for motion are derived from the controlled limb-water interactions (i.e., the hydrodynamics). After learning the structural and behavioral strategies of the grasshoppers, a robot was created and was capable of swimming and jumping on the water surface like the insects, further demonstrating the effectiveness of decoupling the challenges of aquatic locomotion by the combined use of the static and dynamic hydro forces. This work not only uncovered the combined mechanisms responsible for facilitating aquatic acrobatics in this species but also laid a foundation for developing bioinspired robots that can locomote across multiple media.


Asunto(s)
Saltamontes , Robótica , Animales , Locomoción , Insectos , Agua , Fenómenos Biomecánicos
4.
Arch Biochem Biophys ; 754: 109949, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430968

RESUMEN

Zonocerus variegatus, or the painted grasshopper, is a food crop pest endemic in Western and Central Africa. Agricultural industries in these regions rely heavily on natural defense mechanisms to control the grasshopper population such as plant-secreted alkaloid compounds. In recent years, the Z. variegatus population has continued to rise due to acquired resistance to alkaloids. Here we focus on the kinetic characterization of a flavin-dependent monooxygenase, ZvFMO, that catalyzes the nitrogen oxidation of many of these alkaloid compounds and confers resistance to the insect. Expression and purification of ZvFMO through a traditional E. coli expression system was successful and provided a unique opportunity to characterize the catalytic properties of an FMO from insects. ZvFMO was found to catalyze oxidation reactions of tertiary nitrogen atoms and the sulfur of cysteamine. Using stopped-flow spectroscopy, we have determined the kinetic mechanism of ZvFMO. We assessed F383 for its involvement in substrate binding, which was previously proposed, and determined that this residue does not play a major role in binding substrates. Through molecular docking, we identified N304 and demonstrated that this residue plays a role in substrate binding. The role of K215 was studied and was shown that it plays a critical role in NAD(P)H binding and cofactor selectivity.


Asunto(s)
Alcaloides , Saltamontes , Animales , Oxigenasas de Función Mixta/química , Escherichia coli , Simulación del Acoplamiento Molecular , Cinética , Compuestos Orgánicos , Flavinas , Nitrógeno
5.
J Insect Sci ; 24(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501856

RESUMEN

Pollutants in an environment can have long-term implications for the species living there, resulting in local adaptations with implications for their genetic structure. Heavy metal pollutants infiltrate soils and groundwater, bioaccumulate in food webs, and negatively impact biota. In this study, we investigated the degree to which the genetic structure and variability of the slender green-winged grasshopper (Aiolopus thalassinus (Fabricius) (Orthoptera: Acrididae)) were impacted by heavy metal pollution and distance. We used the random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) method to examine the genetic variability of populations in 3 heavy metal-polluted and 3 unpolluted locations across varying geographical distances in Egypt. The heavy metal concentrations of cadmium, copper, lead, and zinc were measured from the grasshopper tissue and soils. Sixty-nine unique and polymorphic bands were produced by 4 primers. Cluster and principal component analyses separated the populations inside and outside Cairo into 2 main branches, which were further divided into smaller branches corresponding to their geographical regions. We found no differences in the Shannon genetic diversity index between populations or with increasing heavy metal concentrations in either the soil or the grasshopper tissue. Our results showed a greater genetic variation among populations than between populations within the same location, indicating populations within locations were less differentiated than those between locations. The moderate correlation between genetic similarity and spatial distance suggests geographical isolation influenced grasshopper population differentiation. Based on the RAPD analysis, environmental pollutants and geographical distances impact the A. thalassinus population structure, potentially restricting gene flow between sites even at small spatial scales.


Asunto(s)
Contaminantes Ambientales , Saltamontes , Metales Pesados , Animales , Saltamontes/genética , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Egipto , Metales Pesados/análisis , Contaminantes Ambientales/análisis , Suelo , Variación Genética
7.
Zootaxa ; 5406(3): 481-486, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38480137

RESUMEN

A curious micropteous gaudy grasshopper (family Pyrgomorphidae), Burmorthacris subaptera was described by Kevan, Singh and Akbar in 1964 as a sole member of its genus based on a female and a male collected in Yenangyaung (upper Myanmar) on 27th and 28th August 1937 and which were deposited at the Academy of Natural Sciences of Philadelphia. The species has never been reported since then. The genus Burmorthacris is the northernmost of the Orthacris genus group genera, which includes mostly genera from Sri Lanka and Malaysia. Recently we rediscovered this B. subaptera in its type locality (Yenangyaung township in the Magway Region) in Myanmar, 85 years after the holotype and the paratype were collected in the same place, and furthermore herewith we present one more locality in another region where the species has been found (Nyaung-U township in the Mandalay Region). Due to the lack of basically any information on this species distribution and habitat, including also photographs of its natural coloration in this habitat, the present study provides the first-time photographs of B. subaptera in its natural habitat from both localities, as well as some insights into its morphology, especially coloration, habitat, and behavior.


Asunto(s)
Ecosistema , Saltamontes , Masculino , Femenino , Animales , Mianmar
8.
Zootaxa ; 5410(1): 67-78, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38480257

RESUMEN

Paralethus montanus n. sp. is described from Chiapas, Mexico. This new species constitutes the first record of the genus for Mexico, previously known only for El Salvador and Guatemala, and it is the first episactid species collected at higher elevations (above 3000 m). A standardization for the abbreviations of the genital structures of episactids is proposed, which could apply to other groups of eumastacoids. A key for the identification of Paralethus species is also provided. Finally, the taxonomy of the genus and the spatial and altitudinal distribution of Central American taxa are discussed.


Asunto(s)
Saltamontes , Ortópteros , Animales , México , Distribución Animal
9.
J Agric Food Chem ; 72(8): 4334-4338, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354400

RESUMEN

4-Vinylanisole is an aggregation pheromone of the locust. Both gregarious and solitary locusts exhibit a strong attraction toward 4-vinylanisole, irrespective of gender or age. Therefore, 4-vinylanisole can be used for trapping and monitoring locusts. In this study, the construction of a de novo 4-vinylanisole pathway in Escherichia coli has been demonstrated for the first time. Subsequently, by increasing the supply of precursor substrates, we further improved the biosynthesis of 4-vinylanisole. Finally, a two-phase organic overlay culture was used to increase the titer to 206 mg/L. It presents a sustainable and ecofriendly alternative for the synthesis of 4-vinylanisole.


Asunto(s)
Escherichia coli , Saltamontes , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Estirenos , Feromonas/metabolismo , Ingeniería Metabólica
10.
Environ Sci Pollut Res Int ; 31(12): 18701-18722, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38349496

RESUMEN

Floods are arguably the most impactful of natural hazards. The increasing magnitude of their effects on the environment, human life, and economic activities calls for improved management of water resources. Flood susceptibility modeling has been used around the world to reduce the damage caused by flooding, although the extrapolation problem still presents a significant challenge. This study develops a machine learning (ML) model utilizing deep neural network (DNN) and optimization algorithms, namely earthworm optimization algorithm (EOA), wildebeest herd optimization (WHO), biogeography-based optimization (BBO), satin bowerbird optimizer (SBO), grasshopper optimization algorithm (GOA), and particle swarm optimization (PSO), to solve the extrapolation problem in the construction of flood susceptibility models. Quang Nam Province was chosen as a case study as it is subject to the significant impact of intense flooding, and Nghe An Province was selected as the region for extrapolation of the flood susceptibility model. Root mean square error (RMSE), receiver operating characteristic (ROC), the area under the ROC curve (AUC), and accuracy (ACC) were applied to assess and compare the fit of each of the models. The results indicated that the models in this study are a good fit in establishing flood susceptibility maps, all with AUC > 0.9. The deep neural network (DNN)-BBO model enjoyed the best results (AUC = 0.99), followed by DNN-WHO (AUC = 0.99), DNN-SBO (AUC = 0.98), DNN-EOA (AUC = 0.96), DNN-GOA (AUC = 0.95), and finally, DNN-PSO (AUC = 0.92). In addition, the models successfully solved the extrapolation problem. These new models can modify their behavior to evaluate flood susceptibility in different regions of the world. The models in this study distribute a first point of reference for debate on the solution to the extrapolation problem, which can support urban planners and other decision-makers in other coastal regions in Vietnam and other countries.


Asunto(s)
Saltamontes , Oligoquetos , Humanos , Animales , Inundaciones , Sistemas de Información Geográfica , Tecnología de Sensores Remotos , Algoritmos , Aprendizaje Automático
11.
Biol Lett ; 20(2): 20230468, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38378141

RESUMEN

Intermittent motion is prevalent in animal locomotion. Of special interest is the case of collective motion, in which social and environmental information must be processed in order to establish coordinated movement. We explored this nexus in locust, focusing on how intermittent motion interacts with swarming-related visual-based decision-making. Using a novel approach, we compared individual locust behaviour in response to continuously moving stimuli, with their response in semi-closed-loop conditions, in which the stimuli moved either in phase with the locust walking, or out of phase, i.e. only during the locust's pauses. Our findings clearly indicate the greater tendency of a locust to respond and 'join the swarming motion' when the visual stimuli were presented during its pauses. Hence, the current study strongly confirms previous indications of the dominant role of pauses in the collective motion-related decision-making of locusts. The presented insights contribute to a deeper general understanding of how intermittent motion contributes to group cohesion and coordination in animal swarms.


Asunto(s)
Saltamontes , Animales , Saltamontes/fisiología , Locomoción/fisiología , Conducta Animal/fisiología , Percepción Visual , Movimiento (Física)
12.
Sci Adv ; 10(7): eadj1164, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354233

RESUMEN

Desert locusts threaten crop production and food security. Spatially synchronized locust outbreaks further exacerbate these crises. Continental-scale understanding of such compound locust risks and underlying climatic drivers is crucial to designing coordinated and predictive control strategies but remains elusive. Here, we develop a data-driven framework to assess the compound risk of locust outbreaks in the Middle East and North Africa (MENA) and elucidate the role of climate in locust dynamics. We find that more than one-fifth of high-risk country pairs faced spatially synchronized locust risks from 1985 to 2020, dominated by concurrent winds or inundations. Individual locusts are more prone to infest arid areas punched by extreme rainfall. The spatial prevalence of locusts is strongly modulated by climate variability such as El Niño-Southern Oscillation. A warming climate will lead to widespread increases in locust outbreaks with emerging hotspots in west central Asia, posing additional challenges to the global coordination of locust control.


Asunto(s)
Saltamontes , Animales , Brotes de Enfermedades , El Niño Oscilación del Sur , Medio Oriente
13.
J Parasitol ; 110(1): 1-7, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232761

RESUMEN

This study was conducted to determine how reducing the parasite burden in a definitive host may affect the prevalence in intermediate hosts. Here we used the eyeworm Oxyspirura petrowi and cecal worm Aulonocephalus pennula as model species. Northern bobwhite quail (Colinus virginianus) were provided an anthelmintic medicated feed in wild systems because of convincing evidence that these parasites were suppressing their populations. Eyeworm and cecal worm prevalence were measured in Orthopterans, which act as intermediate hosts, using polymerase chain reaction. Individuals were collected from a control site, a site treated for 2 yr, and a site treated for 5 yr. Orthopteran community composition was significantly different among the sites; however, an interaction between subfamily and site was not significant for the eyeworm. There was a significant reduction in eyeworm-infected Orthopterans on the 5-yr site compared with the other 2, suggesting that treatment of a definitive host may indeed affect the prevalence of eyeworms during other life-cycle stages. There was an interaction between the Orthopteran subfamily and the site for the cecal worm, so results were analyzed within each subfamily. A significant reduction in the prevalence of cecal worms was only found in the Cyrtacanthacridinae subfamily on the 5-yr site when compared with the other sites. However, the greatest prevalence in the Gomphocerinae and Oedipodinae subfamilies across all 3 sites was 4.1%. This indicates an unknown degree of cecal worm host specificity. Therefore, conclusions could not be made through the simple assessment of prevalence.


Asunto(s)
Enfermedades de las Aves , Colinus , Saltamontes , Enfermedades Parasitarias , Thelazioidea , Humanos , Animales , Colinus/parasitología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Estadios del Ciclo de Vida
14.
Phys Biol ; 21(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38266294

RESUMEN

A fundamental question in complex systems is how to relate interactions between individual components ('microscopic description') to the global properties of the system ('macroscopic description'). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form 'marching bands'. These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective 'pressure' of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.


Asunto(s)
Saltamontes , Modelos Biológicos , Animales , Humanos , Hidrodinámica , Movimiento , Movimiento (Física)
15.
PLoS Comput Biol ; 20(1): e1011796, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38285716

RESUMEN

Naturally occurring collective motion is a fascinating phenomenon in which swarming individuals aggregate and coordinate their motion. Many theoretical models of swarming assume idealized, perfect perceptual capabilities, and ignore the underlying perception processes, particularly for agents relying on visual perception. Specifically, biological vision in many swarming animals, such as locusts, utilizes monocular non-stereoscopic vision, which prevents perfect acquisition of distances and velocities. Moreover, swarming peers can visually occlude each other, further introducing estimation errors. In this study, we explore necessary conditions for the emergence of ordered collective motion under restricted conditions, using non-stereoscopic, monocular vision. We present a model of vision-based collective motion for locust-like agents: elongated shape, omni-directional visual sensor parallel to the horizontal plane, and lacking stereoscopic depth perception. The model addresses (i) the non-stereoscopic estimation of distance and velocity, (ii) the presence of occlusions in the visual field. We consider and compare three strategies that an agent may use to interpret partially-occluded visual information at the cost of the computational complexity required for the visual perception processes. Computer-simulated experiments conducted in various geometrical environments (toroidal, corridor, and ring-shaped arenas) demonstrate that the models can result in an ordered or near-ordered state. At the same time, they differ in the rate at which order is achieved. Moreover, the results are sensitive to the elongation of the agents. Experiments in geometrically constrained environments reveal differences between the models and elucidate possible tradeoffs in using them to control swarming agents. These suggest avenues for further study in biology and robotics.


Asunto(s)
Saltamontes , Percepción de Movimiento , Humanos , Animales , Visión Ocular , Modelos Teóricos , Simulación por Computador , Movimiento (Física) , Percepción de Profundidad
16.
Proc Biol Sci ; 291(2015): 20232121, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228175

RESUMEN

Swarming locusts present a quintessential example of animal collective motion. Juvenile locusts march and hop across the ground in coordinated groups called hopper bands. Composed of up to millions of insects, hopper bands exhibit aligned motion and various collective structures. These groups are well-documented in the field, but the individual insects themselves are typically studied in much smaller groups in laboratory experiments. We present, to our knowledge, the first trajectory data that detail the movement of individual locusts within a hopper band in a natural setting. Using automated video tracking, we derive our data from footage of four distinct hopper bands of the Australian plague locust, Chortoicetes terminifera. We reconstruct nearly 200 000 individual trajectories composed of over 3.3 million locust positions. We classify these data into three motion states: stationary, walking and hopping. Distributions of relative neighbour positions reveal anisotropies that depend on motion state. Stationary locusts have high-density areas distributed around them apparently at random. Walking locusts have a low-density area in front of them. Hopping locusts have low-density areas in front and behind them. Our results suggest novel insect interactions, namely that locusts change their motion to avoid colliding with neighbours in front of them.


Asunto(s)
Saltamontes , Animales , Anisotropía , Australia , Movimiento , Movimiento (Física)
17.
Sci Rep ; 14(1): 843, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191643

RESUMEN

Detection and classification of epileptic seizures from the EEG signals have gained significant attention in recent decades. Among other signals, EEG signals are extensively used by medical experts for diagnosing purposes. So, most of the existing research works developed automated mechanisms for designing an EEG-based epileptic seizure detection system. Machine learning techniques are highly used for reduced time consumption, high accuracy, and optimal performance. Still, it limits by the issues of high complexity in algorithm design, increased error value, and reduced detection efficacy. Thus, the proposed work intends to develop an automated epileptic seizure detection system with an improved performance rate. Here, the Finite Linear Haar wavelet-based Filtering (FLHF) technique is used to filter the input signals and the relevant set of features are extracted from the normalized output with the help of Fractal Dimension (FD) analysis. Then, the Grasshopper Bio-Inspired Swarm Optimization (GBSO) technique is employed to select the optimal features by computing the best fitness value and the Temporal Activation Expansive Neural Network (TAENN) mechanism is used for classifying the EEG signals to determine whether normal or seizure affected. Numerous intelligence algorithms, such as preprocessing, optimization, and classification, are used in the literature to identify epileptic seizures based on EEG signals. The primary issues facing the majority of optimization approaches are reduced convergence rates and higher computational complexity. Furthermore, the problems with machine learning approaches include a significant method complexity, intricate mathematical calculations, and a decreased training speed. Therefore, the goal of the proposed work is to put into practice efficient algorithms for the recognition and categorization of epileptic seizures based on EEG signals. The combined effect of the proposed FLHF, FD, GBSO, and TAENN models might dramatically improve disease detection accuracy while decreasing complexity of system along with time consumption as compared to the prior techniques. By using the proposed methodology, the overall average epileptic seizure detection performance is increased to 99.6% with f-measure of 99% and G-mean of 98.9% values.


Asunto(s)
Epilepsia , Saltamontes , Animales , Convulsiones/diagnóstico , Epilepsia/diagnóstico , Redes Neurales de la Computación , Electroencefalografía
18.
Proc Natl Acad Sci U S A ; 121(3): e2312455121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194450

RESUMEN

Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.


Asunto(s)
Saltamontes , Toxinas Biológicas , Sistemas de Secreción Tipo VII , Animales , Sistemas de Secreción Tipo VII/genética , Citoplasma
19.
Sci Rep ; 14(1): 2608, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297144

RESUMEN

An important question in neuroscience is how sensory systems change as animals grow and interact with the environment. Exploring sensory systems in animals as they develop can reveal how networks of neurons process information as the neurons themselves grow and the needs of the animal change. Here we compared the structure and function of peripheral parts of the olfactory pathway in newly hatched and adult locusts. We found that populations of olfactory sensory neurons (OSNs) in hatchlings and adults responded with similar tunings to a panel of odors. The morphologies of local neurons (LNs) and projection neurons (PNs) in the antennal lobes (ALs) were very similar in both age groups, though they were smaller in hatchlings, they were proportional to overall brain size. The odor evoked responses of LNs and PNs were also very similar in both age groups, characterized by complex patterns of activity including oscillatory synchronization. Notably, in hatchlings, spontaneous and odor-evoked firing rates of PNs were lower, and LFP oscillations were lower in frequency, than in the adult. Hatchlings have smaller antennae with fewer OSNs; removing antennal segments from adults also reduced LFP oscillation frequency. Thus, consistent with earlier computational models, the developmental increase in frequency is due to increasing intensity of input to the oscillation circuitry. Overall, our results show that locusts hatch with a fully formed olfactory system that structurally and functionally matches that of the adult, despite its small size and lack of prior experience with olfactory stimuli.


Asunto(s)
Saltamontes , Neuronas Receptoras Olfatorias , Animales , Odorantes , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Interneuronas , Olfato/fisiología
20.
Mol Phylogenet Evol ; 193: 108012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38224796

RESUMEN

The evolution of several orthopteran groups, especially within the grasshopper family Acrididae, remains poorly understood. This is particularly true for the subfamily Gomphocerinae, which comprises cryptic sympatric and syntopic species. Previous mitochondrial studies have highlighted major discrepancies between taxonomic and phylogenetic hypotheses, thereby emphasizing the necessity of genome-wide approaches. In this study, we employ double-digest restriction site-associated DNA sequencing (ddRADseq) to reconstruct the evolution of Central European Chorthippus and Pseudochorthippus species, especially C.smardai, P.tatrae and the C.biguttulus group. Our phylogenomic analyses recovered deep discordance with mitochondrial DNA barcoding, emphasizing its unreliability in Gomphocerinae grasshoppers. Specifically, our data robustly distinguished the C.biguttulus group and confirmed the distinctiveness of C.eisentrauti, also shedding light on its presence in the Berchtesgaden Alps. Moreover, our results support the reclassification of C.smardai to the genus Pseudochorthippus and of P.tatrae to the genus Chorthippus. Our study demonstrates the efficiency of high-throughput genomic methods such as RADseq without prior optimization to elucidate the complex evolution of grasshopper radiations with direct taxonomic implications. While RADseq has predominantly been utilized for population genomics and within-genus phylogenomics, its application extends to resolve relationships between deeply-diverged clades representative of distinct genera.


Asunto(s)
Saltamontes , Animales , Saltamontes/genética , Filogenia , Cromosomas , ADN Mitocondrial/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...